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I. INTRODUCTION

THIS paper is an extension of the work published in the
conference proceedings [8]. Here, we present a general-

ization of the Krein parameters of an association scheme and
obtain some results on them. This work is also an extension
of the work developed for strongly regular graphs in [6], [7],
since these graphs are symmetric association schemes with two
classes. This paper is organized as follows. In Section II we
will present the basic definitions and properties of symmetric
association schemes which are necessary for our work. All
the concepts presented are described in detail, for instance,
in [1]. In Section III we generalize the Krein parameters
of an association scheme and establish some bounds for
these generalizations. Finally, in Section IV, we present some
conclusions and examples which confirm our results.

II. PRELIMINARIES ON ASSOCIATION SCHEMES

Along this section we will present all the definitions and
results which are necessary and relevant to the development
of our work in the further sections. For extensive reading the
author may consult [1].

A symmetric association scheme, Ω, with d associate
classes on a finite set X is a partition of X × X into
sets R0, R1, . . . , Rd, which are relations on X satisfying the
following axyoms: (i) R0 = {(x, x) : x ∈ X}; (ii) if
(x, y) ∈ Ri, then (y, x) ∈ Ri, for all x, y in X and i in
{0, 1, . . . , d}; (iii) for all i, j, l in {0, 1, . . . , d} there is an
integer plij such that, for all (x, y) in Rl

|{z ∈ X : (x, z) ∈ Ri and (z, y) ∈ Rj}| = plij .

The numbers plij are called the intersection numbers of Ω. It is
usual to observe the intersection numbers as the entries of the
so called intersection matrices L0, L1, . . . , Ld, with (Li)lj =

plij , where L0 = In.
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This definition is due to Bose and Shimamoto, [2], and by
axiom (ii) the relations Ri are all symmetric. A more general
definition of non necessarily symmetric association schemes
can be seen in [4]. Along this text we will only consider
symmetric association schemes.

One can describe the associate classes R0, R1, . . . , Rd of a
symmetric association scheme, Ω, by their adjacency matrices
A0, A1, . . . , Ad, where each Ai is a matrix of order n defined
by (Ai)xy = 1, if (x, y) ∈ Ri, and (Ai)xy = 0, otherwise.
We also have the corresponding axyoms for these matrices:
(a) A0 = In; (b)

∑d
i=0Ai = Jn; (c) Ai = A>i , ∀i ∈

{0, 1, . . . , d}; (d) AiAj =
∑d
l=0 p

l
ijAl, ∀i, j ∈ {0, 1, . . . , d}.

Regard that In and Jn stand for the identity matrix and the
all ones matrix of order n, respectively, and A> denotes
the transpose of A. Note that equality (b) implies that the
matrices Ai, i ∈ 0, 1, . . . , d, are linearly independent. It is
also well known (see [1, Lemma 1.3]) that the symmetry of
the scheme asserts that plij = plji and thus AiAj = AjAi, for
all i, j ∈ {0, 1, . . . , d}.

We can acknowledge A1, A2, . . . , Ad as adjacency matrices
of undirected simple graphs G1, G2, . . . , Gd, with common
vertex set V . Each graph Gi is regular with valency ni. The
matrices A0, A1, . . . , Ad of a symmetric association scheme
generate a commutative algebra, A, with dimension d + 1,
of symmetric matrices with constant diagonal. This algebra
is called the Bose-Mesner algebra of the scheme because it
was firstly studied by these two mathematicians in [3]. Note
that A is an algebra with respect to the usual matrix product
as well as to the Hadamard (or Schur) product, defined for
two matrices A, B of order n as the componentwise product:
(A ◦B)ij = AijBij . The algebra A is commutative and
associative relatively to this product with unit Jn.

An element E in A is an idempotent if E2 = E. Two
idempotents E and F in A are orthogonal if EF = 0. The
Bose-Mesner algebra A has a unique basis of minimal or-
thogonal idempotents {E0, . . . , Ed} such that EiEj = δijEi,∑d
i=0Ei = In, where δij = 1, if i = j and δij = 0, otherwise,

for any i, j natural numbers. Let A be an association scheme
with d classes. If Aj ∈ A, j ∈ {0, 1, . . . , d} has d+ 1 distinct
eigenvalues, namely λ0, λ1, . . . , λd, the idempotents Ei can be
obtained as the projectors associated to the matrix Aj through
the equality:

Ei =
d∏

l=0,l 6=i

Aj − λlIn
λi − λl

. (1)

Along this paper we will denote the rank of each Ei by µi,
i ∈ {0, 1, . . . , d}.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 9, 2015

ISSN: 1998-0140 310



Besides the intersection numbers already introduced in the
beginning of the section each association scheme contains
three more families of parameters: the eigenvalues, the dual
eigenvalues and the Krein parameters. In fact, there are scalars
pi(j) and qi(j) such that, for all i ∈ 0, 1, . . . , d, we have

Ai =
d∑
j=0

pi(j)Ej and (2)

Ei =
d∑
j=0

qi(j)Aj , (3)

where the numbers pi(j) and qi(j) are the eigenvalues and the
dual eigenvalues of the scheme, respectively. We also define
the eigenmatrix, P = (Pij), and the dual eigenmatrix, Q =
(Qij), each with dimension (d+1)×(d+1), as Pij = pj(i) and
Qij = qj(i), respectively. From (2) and (3) one can deduce
that PQ = In. As a consequence, the dual eigenvalues are
determined by the eigenvalues of A.

Finally, the Krein parameters discovered by Scott, [9], of an
association scheme with d classes are the numbers ql(i,j;1,1),
with i, j, l ∈ {0, 1, . . . , d}, such that

Ei ◦ Ej =

d∑
l=0

ql(i,j;1,1)El. (4)

This notation will become clear later, in Section III, with the
introduction of the generalized Krein parameters of an associa-
tion scheme. These parameters can be seen as dual parameters
of the intersection numbers and they are determined by the
eigenvalues of the scheme. Also, the Krein parameters can
be considered as the entries of the matrices L∗0, L

∗
1, . . . , L

∗
d,

such that (L∗i )lj = qlij , which are called the dual intersection
matrices of the scheme.

Now we will emphasize some properties of the matrices P
and Q that we will use in the proofs of some of the theorems
that we will present in this paper.

Q(i, j)Q(i, k) =
2∑
l=0

ql(j,k;1,1)Q(i, l); (5)

|Q(i, j)| ≤ µj
n

; (6)

|P (i, j)| ≤ nj ; (7)
d∑
i=0

niQ(i, j)Q(i, k) ≤ µj
n
δ(j, k). (8)

III. GENERALIZED KREIN PARAMETERS AND SOME
BOUNDS

In what follows we generalize the Krein parameters of
an association scheme. Let A0, A1, . . . , Ad be the adjacency
matrices of an association scheme with d classes, Ω, on a
finite set of order n, A the underlying Bose-Mesner algebra
and S = {E0, E1, . . . , Ed} be the associated unique basis of
minimal orthogonal idempotents. Let p be a natural number
and denote by Mn(R) the set of square matrices of order n
with real entries. Then, for B ∈ Mn(R), we denote by B◦p

the Hadamard power of order p of B, with B◦1 = B.

Now, we introduce the following compact notation for the
Hadamard powers of the elements of S. Let x, y, α and β
be natural numbers such that 0 ≤ α, β ≤ d. Then we define
E◦xα = (Eα)

◦x and E◦x,yα,β = (Eα)
◦x ◦ (Eβ)

◦y . Note that,
when α = β, there is a connection between the two notations:
E◦x,yα,α = E◦x+yα .

Since the Bose-Mesner algebra A, that is generated by
the adjacency matrices of Ω, is closed under the Hadamard
product, then there exist real numbers qi(α,β;x,y) such that

E◦x,yα,β =
d∑
i=0

qi(α,β;x,y)Ei. (9)

We call the parameters qi(α,β;x,y), i ∈ {0, 1, . . . , d}, the
generalized Krein parameters of the association scheme Ω,
since for x = y = 1 we obtain the “classical” Krein parameters
already presented in (4). With this notation, the greek letters
are used as idempotent indices and the latin letters are used
as exponents of Hadamard powers.

Next we present a formula to compute the generalized Krein
parameters by making use of just the entries of the matrices
P and Q.

Theorem 1: Let Ω be a symmetric association scheme with
d classes and let i, x, y, α and β be natural numbers such that
0 ≤ i, α, β ≤ d. Then the generalized Krein parameters of Ω,
defined in (9), satisfy the equality

qi(α,β;x,y) =
d∑
t=0

(Q(t, α))x(Q(t, β))yP (i, t). (10)

Proof: We have

E◦x,yα,β = E◦xα ◦ E
◦y
β =

d∑
t=0

(Q(t, α))xAt ◦
d∑
t=0

(Q(t, β))yAt.

It follows that E◦xα ◦E
◦y
β =

∑d
t=0(Q(t, α))x(Q(t, β))yAt. But

then, from (2)-(3) one can write

E◦xα ◦ E
◦y
β Ei =

d∑
t=0

(Q(t, α))x(Q(t, β))yAtEi.

Then, we have

qi(α,β;x,y)Ei =
d∑
t=0

(Q(t, α))x(Q(t, β))yP (i, t)Ei.

Therefore (10) follows.

From Theorem 1 we obtain the following consequence.

Corollary 1: Let Ω be a symmetric association scheme with
d classes and let i, α and β be natural numbers such that
0 ≤ i, α, β ≤ d. Then, the classical Krein parameters of Ω
satisfy

qi(α,β;1,1) =
d∑
t=0

Q(t, α)Q(t, β)P (i, t).
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Now we present some bounds on the generalized Krein
parameters. They can be obtained by making use of the
properties (5)-(8).

Theorem 2: Consider a symmetric association scheme Ω
with d classes. Then, for all natural numbers i, x, y, α and β
such that 0 ≤ i, α, β ≤ d, we have

0 ≤ qi(α,β;x,y) ≤ 1.

The following result presents another upper-bound on the
generalized Krein parameters associated to only one idempo-
tent.

Theorem 3: Let Ω be a symmetric association scheme with
d classes on a finite set of order n and let i, x, y and α be
natural numbers such that 0 ≤ i, α,≤ d. Then the generalized
Krein parameter qi(α,α;x,y), with x+ y = m, satisfies

qi(α,α;x,y) ≤
(µα
n

)m−1
.

Proof: Since qiαm =
∑d
t=0(Q(t, α))mP (i, t) and

|Q(t, α)| ≤ µα

n , and |P (i, t)| ≤ nt see (i)-(iv), we conclude
that

qiαm =

d∑
t=0

(Q(t, α))mP (i, t)

=

∣∣∣∣∣
d∑
t=0

(Q(t, α))mP (i, t)

∣∣∣∣∣
≤

d∑
t=0

|(Q(t, α))m| |P (i, t)|

≤
d∑
t=0

|Q(t, α)|m−2 (Q(t, α))2nt

≤
d∑
t=0

(µα
n

)m−2
(Q(t, α))

2
nt

≤
(µα
n

)m−2 d∑
t=0

(Q(t, α))
2
nt

≤
(µα
n

)m−2 µα
n

=
(µα
n

)m−1
.

Proceeding in an analogous manner as we have done in the
proof of Theorem 3, we obtain the following result.

Theorem 4: Let Ω be a symmetric association scheme with
d classes on a finite set of order n and let i, x, α and β
be natural numbers such that 0 ≤ i, α, β ≤ d and α < β.
Then, the generalized Krein parameter qi(α,β;x,x) satisfies the
inequality

qi(α,β;x,x) ≤
(

1

2

)x(
2(max{µα, µβ})2

n2

)x−1
.

Proof: Since

qiαβxy =
2∑
d=0

(Q(d, α))x(Q(d, β))yP (i, d)

and |Q(d, α)| ≤ (µα

n ), |Q(d, β)| ≤ µβ

n , |P (i, d)| ≤ nd (see
(7) and (8)), we conclude that

qiαβxx =
d∑
t=0

(Q(t, α))x(Q(t, β))xP (i, t)

=

∣∣∣∣∣
d∑
t=0

((Q(t, α))(Q(t, β)))xP (i, t)

∣∣∣∣∣
≤

d∑
t=0

(
1

2

)x (
(Q(t, α))2 + (Q(t, β))2

)x |P (i, t)|

≤
d∑
t=0

(
1

2

)x (
(Q(t, α))2 + (Q(t, β))2

)x−1
×

(
(Q(t, α))2 + (Q(t, β))2

)
nt

≤
d∑
t=0

(
1

2

)x((µα
n

)2
+
(µβ
n

)2)x−1
×

(
(Q(t, α))2 + (Q(t, β))2

)
nt

≤
d∑
t=0

(
1

2

)x(
2

(max{µα, µβ})2

n2

)x−1
×

(
(Q(t, α))2 + (Q(t, β))2

)
nt

≤
(

1

2

)x(
2

(max{µα, µβ})2

n2

)x−1
×

d∑
t=0

(
(Q(t, α))2 + (Q(t, β)

)2
)nt

≤
(

1

2

)x(
2

(max{µα, µβ})2

n2

)x−1 (µα
n

+
µβ
n

)
≤

(
1

2

)x(
2

(max{µα, µβ})2

n2

)x−1 (µα
n

+
µβ
n

)
≤

(
1

2

)x(
2

(max{µα, µβ})2

n2

)x−1(
n− 1

n

)
≤

(
1

2

)x(
2

(max{µα, µβ})2

n2

)x−1
.

From Theorems 3 and 4 we conclude the following corollary
that states the above bounds for the classical Krein parameters
of association schemes.

Corollary 2: Let Ω be a symmetric association scheme with
d classes on a finite set of order n and let i, α and β be natural
numbers such that 0 ≤ i, α, β ≤ d and α < β.Then:

(i) qi(α,α;1,1) ≤
µα
n ;

(ii) qi(α,β;1,1) ≤
1
2 .
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IV. CONCLUSIONS

From the analysis of the generalized Krein parameters we
have deduced new upper-bounds over the generalized Krein
parameters of a symmetric association scheme. Finally, from
the results of Corollary 2, we present upper-bounds on the
classical Krein parameters of a symmetric association scheme
that we will show that cannot be improved by presenting some
examples.

Example 1: In this example we consider association
schemes with two classes which are equivalent to strongly
regular graphs.
(a) Let us consider the family of strongly regular graphs

known as the conference graphs. A member of this
family of order n satisfies µ0 = 1, µ1 = n−1

2 and µ2 =
n−1
2 . Also, we have: q0(1,1;1,1) = 1/2 − 1/2n = µ1/n.

Therefore, the upper-bound presented in (i) of Corollary
2 is attained.

(b) Now, we consider the family of strongly regular graphs
known as the cocktail party graphs. For a member of
this family of order 2l we have:

q1(1,2;1,1) =
l − 1

2l
,

and therefore the upper-bound presented in (ii) of
Corollary 2 is asymptotically attained.

Example 2: In this example we present a family of associ-
ation schemes with three classes constructed from symmetric
designs. This family has an infinite number of elements and it
is presented and studied in [10], where the following definition
can be seen.

Let P be a set of points and B be a set of blocks, where
a block is a subset of P . Then, the ordered pair (P,B) is a
symmetric design with parameters (n, k, c), with c < k, if it
satisfies the following properties:
(i) B is a subset of the power set of P;

(ii) |P| = |B| = n;
(iii) ∀b ∈ B, |b| = k;
(iv) ∀p ∈ P , |{b ∈ B : p ∈ b}| = k;
(v) ∀p1, p2 ∈ P , p1 6= p2, |{b ∈ B : p1, p2 ∈ b}| = c;

(vi) ∀b1, b2 ∈ B, b1 6= b2, |{p ∈ P : p ∈ b1 ∧ p ∈ b2}| = c.
Given a symmetric design with parameters (n, k, c), we

build a three class association scheme, as in [10], in the
following manner. Let X = P ∪ B. We define the following
relations in X ×X:

R0 = {(x, x) : x ∈ X};
R1 = {(x, y) ∈ P × B : x ∈ y} ∪ {(y, x) ∈ B × P : x ∈ y};
R2 = {(x, y) ∈ P × P : x 6= y} ∪ {(x, y) ∈ B × B : x 6= y};
R3 = {(x, y) ∈ P × B : x /∈ y} ∪ {(y, x) ∈ B × P : x /∈ y} .

Through the axioms (i) − (vi) of a symmetric design it is
proved that R0, R1, R2, R3 constitute an association scheme
with three classes over X . From the relations above we

compute the intersection matrices of the association scheme,
given by L0 = I4,

L1 =


0 k 0 0
1 0 k − 1 0
0 c 0 k − c
0 0 k 0

 ,

L2 =


0 0 n− 1 0
0 k − 1 0 n− k
1 0 n− 2 0
0 k 0 n− k − 1

 ,

L3 =


0 0 0 n− k
0 0 n− k 0
0 k − c 0 n− 2k + c
1 0 n− k − 1 0

 .

Now, using axioms (a) − (d) of the matrices of the Bose-
Mesner algebra, A = {A0, A1, A2, A3}, we obtain:

• A0 ×Ai = Ai ×A0 = Ai, for i ∈ {0, 1, 2, 3};
• A1 ×A1 = kA0 + cA2;
• A1 ×A2 = A2 ×A1 = (k − 1)A1 + kA3;
• A1 ×A3 = A3 ×A1 = (k − c)A2;
• A2 ×A2 = (n− 1)A0 + (n− 2)A2;
• A2 ×A3 = A3 ×A2 = (n− k)A1 + (n− k − 1)A3;
• A3 ×A3 = (n− k)A0 + (n− 2k + c)A2.

Now we can calculate the powers of A1 to obtain the
following polynomial:

pA1(λ) = λ4 + (−k2 − k + c)λ2 + k2(k − c), (11)

such that pA1
(A1) = On, where On denotes the n di-

mensional null matrix. Then A1 has four distinct eigenval-
ues and therefore the least natural number such that the
set {In, A1, A

2
1, . . . , A

k
1} is linear dependent is 4. Then, we

conclude that the polynomial (11) is the minimal polynomial
of A1.

Applying formula (1) to the matrix A1, considering the
eigenvalues of the polynomial (11), λ0 = k, λ1 = −k,
λ2 =

√
k − c and λ3 = −

√
k − c, and taking into account

the equality

(n− 1)c = k(k − 1), (12)

satisfied by these symmetric designs with parameters (n, k, c),
see [5], we obtain the elements of the unique basis of minimal
orthogonal idempotents of A:

E0 =
A0 +A1 +A2 +A3

2n
=
Jn
2n

;

E1 =
A0 −A1 +A2 −A3

2n
;

E2 =
(n− 1)

√
k − cA0 + (n− k)A1 −

√
k − cA2 − kA3

2n
√
k − c

;

E3 =
(n− 1)

√
k − cA0 − (n− k)A1 −

√
k − cA2 + kA3

2n
√
k − c

.

Now we apply equalities (2) and (3) to compute the matrices
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P and Q, respectively:

P =


1 k n− 1 n− k
1 −k n− 1 k − n
1
√
k − c −1 −

√
k − c

1 −
√
k − c −1

√
k − c

 ,

Q =
1

2n


1 1 n− 1 n− 1
1 −1 − k−n√

k−c
k−n√
k−c

1 1 −1 −1
1 −1 − k√

k−c
k√
k−c

 .

Finally, we obtain the dual intersection matrices of this asso-
ciation scheme by applying formula (10) from Proposition 1
and taking into account equality (12): L∗0 = I4/2n,

L∗1 =
1

2n


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,

L∗2 =
1

2n


0 0 n− 1 0
0 0 0 n− 1
1 0 n−2

2 + n−2k
2
√
k−c

n−2
2 −

n−2k
2
√
k−c

0 1 n−2
2 −

n−2k
2
√
k−c

n−2
2 + n−2k

2
√
k−c

 ,

L∗3 =
1

2n


0 0 0 n− 1
0 0 n− 1 0
0 1 n−2

2 −
n−2k
2
√
k−c

n−2
2 + n−2k

2
√
k−c

1 0 n−2
2 + n−2k

2
√
k−c

n−2
2 −

n−2k
2
√
k−c

 .

From the dual intersection matrices presented above, it is
possible to extract some evidence of the optimality of the
upper bound 1/2, for the Krein parameters qlij , with i 6= j,
presented in Corollary 2, (ii). In fact, we can observe that

q023 = (L∗2)03 =
n− 1

2n

and this value converges to 1/2, when n tends to infinity.

Regardless the examples presented above, we can construct
other examples of symmetric association schemes with a num-
ber of classes greater than three for which the Krein parameters
converge for the values of the upper-bounds presented in
Theorems 3 and 4, by calling upon the the Kronecker product
of symmetric association schemes.
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